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ABSTRACT: The upper limb of the Atlantic meridional overturning circulation draws waters with negative potential

vorticity from the Southern Hemisphere into the Northern Hemisphere. The North Brazil Current is one of the cross-

equatorial pathways in which this occurs: upon crossing the equator, fluid parcels must modify their potential vorticity to

render them stable to symmetric instability and to merge smoothly with the ocean interior. In this work a linear stability

analysis is performed on an idealized western boundary current, dynamically similar to the North Brazil Current, to identify

features that are indicative of symmetric instability. Simple two-dimensional numerical models are used to verify the results

of the stability analysis. The two-dimensional models and linear stability theory show that symmetric instability in me-

ridional flows does not change when the nontraditional component of the Coriolis force is included, unlike in zonal flows.

Idealized three-dimensional numerical models show anticyclonic barotropic eddies being spun off as the western boundary

current crosses the equator. These eddies become symmetrically unstable a few degrees north of the equator, and their PV is

set to zero through the action of the instability. The instability is found to have a clear fingerprint in the spatial Fourier

transform of the vertical kinetic energy. An analysis of the water mass formation rates suggest that symmetric instability

has a minimal effect on water mass transformation in the model calculations; however, this may be the result of unresolved

dynamics, such as secondary Kelvin–Helmholtz instabilities, which are important in diabatic transformation.

SIGNIFICANCE STATEMENT: The Atlantic meridional overturning circulation includes an ocean current that

transports heat, carbon, and other climatically important tracers from the Southern Hemisphere into the Northern

Hemisphere. Theoretical considerations suggest that this current may become unstable through the so-called ‘‘sym-

metric instability’’ upon crossing the equator. In this study, a hierarchy of models is used to investigate how symmetric

instability might manifest itself if excited in cross-equatorial flows. We find that when the instability is excited, it gen-

erates stacked overturning cells which reorganize the current to make it neutrally stable to symmetric instability.

We hypothesize this process could be occurring in the ocean off the coast of Brazil.

KEYWORDS: Tropics; Boundary currents; Conditional instability; Diapycnal mixing; Dynamics; Eddies; Instability;

Meridional overturning circulation; Mesoscale processes; Potential vorticity; Differential equations; Numerical

analysis/modeling; Ocean models

1. Introduction

The Atlantic meridional overturning circulation (AMOC)

is a climatically important circulation. In its surface limb,

it draws water from the Southern Hemisphere northward

across the equator, redistributing climatically important

tracers such as heat and carbon as it does so (Buckley and

Marshall 2016). At 268N the AMOC transports around

1.25 PW of heat northward (Bryden et al. 2020), which

accounts for around 25% of the meridional transport of

heat by the global atmosphere and ocean at this latitude

(Srokosz et al. 2012). The AMOC’s contribution to pole-

ward heat transport warms western Europe by around 58C
(Jackson et al. 2015).

The North Brazil Current is a surface-intensified cross-

equatorial western boundary current that follows the coast

of Brazil from around 108–158S to around 48–88N. Here, it

retroflects and breaks up into anticyclonic eddies called the

North Brazil Current rings, which continue northward to

the Caribbean (Talley et al. 2011; Fonseca et al. 2004). Both the

current and its rings are an important pathway in the north-

ward transport of Southern Hemisphere waters, and form an

important component of the AMOC (Bower et al. 2019). The

current itself has an annual mean transport of around 32 Sv

(1 Sv[ 106m3 s21) in the upper 600m of the ocean, with typical

peak velocities of ;80 cm s21 and a width of ;100 km (Johns

et al. 1998; Schott et al. 1993). At the equator there is a break

down in geostrophy due to the vanishing of the Coriolis pa-

rameter; however, at latitudes 18 north or south of the equator,

the current is geostrophically balanced to leading order, while

the rings are in cyclogeostrophic balance (Vianna and de

Menezes 2003; Castelão and Johns 2011). The flows considered
in the following study are dynamically similar to theNorthBrazil

Current; however, the conclusions of this work are expected to

apply to cross-equatorial flows in upper-oceanwestern boundary

currents more generally.
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The change in sign of the locally vertical component of

planetary vorticity at the equator is an important constraint on

the way in which water is able to cross from one hemisphere to

the other. The Ertel potential vorticity (PV) of a Boussinesq

fluid is defined as

Q5 (f1$3u) � $b , (1)

where f is the planetary vorticity, u is the velocity relative to

Earth’s surface, and b is the buoyancy. The PV of a fluid parcel

is materially conserved in the absence of mechanical and

buoyancy forcing, and neglecting nonlinearities in the equation

of state. Waters starting in the Southern Hemisphere typically

have negative PV as a result of the vertical component of their

planetary vorticity. Close to the equator, the planetary vor-

ticity varies approximately linearly with latitude—the b-plane

approximation. As Southern Hemisphere waters flow north-

ward across the equator, their planetary vorticity increases and

so, to conserve PV, the flow generates anticyclonic relative

vorticity. Killworth (1991) shows that this requirement to

conserve PV inhibits the penetration of fluid from one hemi-

sphere to another, further than a fewRossby deformation radii.

At the equator, the meridional component of the planetary

vorticity vector is a maximum. In studies of geophysical fluid

dynamics this term is often neglected, which we describe as

making the ‘‘traditional Coriolis approximation.’’ Conversely

retention of the meridional component of the planetary vor-

ticity vector is described as including the ‘‘complete,’’ ‘‘full,’’ or

‘‘nontraditional’’ components of the Coriolis force (Stewart

and Dellar 2011). When treating the vertical component of the

planetary vorticity as constant, we make the f-plane approxi-

mation. Close to the equator we may also make the nontradi-

tional f-plane approximation, in which we treat the meridional

component of planetary vorticity as constant instead.

In a numerical model of cross-equatorial flow, Edwards and

Pedlosky (1998a) find an anticyclonic eddy field is generated at

the equator. They show that this field is responsible for ad-

vecting PV, of the opposite sign to the planetary vorticity,

into a viscous boundary layer where it can be dissipated. This

provides a mechanism for the modification of PV, whose

conservation would otherwise inhibit cross-equatorial flow.

The eddy field is observed in other models of cross-equatorial

flow (e.g., Jochum and Malanotte-Rizzoli 2003; Goes et al.

2009). In a follow up study, Edwards and Pedlosky (1998b)

show that the eddy field is generated by barotropic instability,

and is enhanced as the Rossby deformation radius is maximal

at the equator. It has been proposed this mechanism is behind

the generation of the North Brazil Current rings (Jochum and

Malanotte-Rizzoli 2003). The North Brazil Current, however,

is a surface current and so viscous boundary layers can play

only a limited role, if any, in the modification of PV. As such,

turbulent processes in the current’s interior are more likely to

be of importance. These turbulent processes are of particular

interest as they may lead to a short circuiting of the AMOC

through enhanced diapycnal mixing. Symmetric instability is

one turbulent process that may be capable of modifying the PV

in cross-equatorial flows.

Symmetric instability may occur when the PV and the (lo-

cally vertical component of the) planetary vorticity of a fluid

parcel have opposing signs (Hoskins 1974; Stone 1966).1 The

change in sign of planetary vorticity at the equator, provided

that potential vorticity is conserved, means that a fluid parcel

which is initially stable to symmetric instability in one hemi-

sphere, will become symmetrically unstable upon being ad-

vected across the equator. Symmetric instability is excited as a

result of an imbalance between pressure gradient forces and

the Coriolis force, along isopycnals (American Meteorological

Society 2020). The ‘‘symmetric’’ in symmetric instability comes

from the fact that the simplest flows in which it can occur are

symmetric in the along stream direction. Flows withQ; 0 are

described as having marginal or neutral PV, and PV of the

opposite sign to the planetary vorticity is described as being

anomalous. The excitement of symmetric instability in regions

of anomalous PV sets up stacked overturning cells that advect

PV around to produce a symmetrically stable configuration.

In the limit of a flow free of vertical shear (or a flow with

horizontal isopycnals), inertial instability is said to occur.

Symmetric instability can be thought of as a generalized form

of inertial instability along isopycnals (Haine and Marshall

1998; Holton and Hakim 2013). Hua et al. (1997) suggest that

the near neutrality of the time mean PV in the interior of the

equatorial Pacific may be a result of the excitement of inertial

instability in the predominantly zonal flow. In the Atlantic,

Castelão and Johns (2011) come to a similar conclusion upon

observing marginal PV in the North Brazil Current rings.

It is our hypothesis that symmetric instability is excited in

cross-equatorial western boundary currents, such as the North

Brazil Current, and that its excitement allows the mixing of

water with PV of both signs resulting in a marginally stable PV

configuration. The complete Coriolis force has been found to

alter the evolution of symmetrically unstable flows (Zeitlin

2018). It is not clear what role the complete Coriolis force may

play in the PV modification process. Symmetric instability

could also be at play in deep western boundary currents.

However, bottom topography may also be important in mod-

ifying anomalous PV, and may limit the applicability of the

work presented here to deep cross-equatorial flows.

In section 2 a linear stability analysis is performed and the

structure of symmetric instability in an idealized western

boundary current is derived from theoretical consider-

ations. In section 3 a two-dimensional numerical model is

used to investigate the properties of a surface intensified

symmetrically unstable western boundary current. Section 4

1 It should be noted that the definition of symmetric instability

used here is that defined in American Meteorological Society

(2020). Under this ‘‘classical’’ definition the instability criterion is

that fQ , 0 (Hoskins 1974), and inertial and gravitational insta-

bilities are both special cases of symmetric instability. This defini-

tion is different to that first employed by Thomas et al. (2013), who

attempt to characterize symmetric instability in terms of its ener-

getics. Under their taxonomic system the instabilities studied in this

work would be described as either inertial or inertial symmetric. In

the literature of the planetary and atmosphere sciences, studies of

cross-equatorial flow use the classical definition of symmetric in-

stability (e.g., Joshi 1994; Rodwell and Hoskins 1995). For consis-

tency with this literature base we adopt the same definition here.
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describes findings from a three-dimensional model of idealized

cross-equatorial western boundary currents. Finally, the key

findings of this work are summarized in section 5.

2. Linear stability analysis

Hoskins (1974) shows that an inviscidmeridional jet, initially

in thermal wind balance and symmetric about the meridional

axis, may be linearly unstable and produce overturning in the

x–z plane. The overturning can be represented as a stream-

function, c, where the zonal and vertical velocities are given by

u52›zc andw5 ›xc, respectively. Hoskins (1974) shows that

the streamfunction, to terms linear in c, satisfies the partial

differential equation

›2

›t2

�
›2

›x2
1

›2

›z2

�
c1

�
N2 ›

2

›x2
2 2f

›V

›z

›2

›x›z
1 f z

›2

›z2

�
c5 0: (2)

Here N is the buoyancy frequency, which is assumed to be

constant, f is the planetary vorticity, V is the basic state me-

ridional velocity, and z is the absolute vorticity of the basic

state about the vertical. The equation is easily generalized to

flows with a harmonic vertical viscosity, by replacing ›t with

›t 2Ar›
2
zz, where Ar is the vertical viscosity.

Solving for c in the viscous case is a difficult problem;

however, much can be gained by considering a basic flow that is

both barotropic andmeridional. Thus, the term proportional to

the vertical shear of the meridional flow is set to zero. The

resulting equation is

�
›

›t
2A

r

›2

›z2

�2�
›2

›x2
1

›2

›z2

�
c1

�
N2 ›2

›x2
1 f z

›2

›z2

�
c5 0 , (3)

which, strictly speaking, describes the evolution of an inertial

instability due to the flow being free of vertical shear.

We can now try to find solut ions of the form

c(x, z, t)5 ĉ(x)ei(mz2vt). Substituting this into (3), we obtain

the following boundary value problem:

(v̂2 2N2)

m2

d2ĉ

dx2
1 f zĉ5 v̂2ĉ , (4)

where v̂5v1 iArm
2. Upon appropriate nondimensionalization

of the coordinates and variables, (4) is identical to Eq. (4) of

Plougonven and Zeitlin (2009), who identify it as a Schrödinger
equation.

From the work of Hoskins (1974), it is known that in the

inviscid limit, v̂2 ; f 2. For oceanic western boundary flows,

typically N2 � f 2. This means we can make the approximation

N2 2 v̂2 ’N2. Plougonven and Zeitlin (2009) show that this is

equivalent to making the hydrostatic approximation and that,

for a flow similar to the one considered here, there is a negli-

gible effect on the solutions. After making the hydrostatic

approximation, we are then left with

2
N2

m2

d2ĉ

dx2
1 f zĉ’ v̂2ĉ . (5)

The eigenfunctions of the equation are ĉ. They define the hori-

zontal structureof theoverturning streamfunction.The eigenvalues

of the equation are v̂2. If the eigenvalue is negative, then it is

possible for v to be imaginary. If v is imaginary, then the

overturning circulation may either grow or decay exponen-

tially. It is useful to introduce the quantity s5 Im(v), which, if

positive, corresponds to the exponential growth rate; if nega-

tive it gives the decay rate. The value of s is maximized for the

smallest real eigenvalue of Eq. (5). For each eigenfunction,

there exists a spectrum of vertical wavenumbers, each with a

characteristic growth rate (or frequency if stable). The rela-

tionship between the growth rate and the vertical wavenumber

is determined by the eigenvalue v̂.

To calculate the eigenfunctions and eigenvalues of the

equation, we must first specify a buoyancy frequency and ve-

locity profile, from which vorticity can be calculated. As we are

interested in western boundary currents, we will consider an

idealized meridional flow: the barotropic Bickley jet. The ve-

locity of the jet can be expressed as

V(x)5V
0

�
12 tanh2

�
x2 x

mid

d
b

��
, (6)

where V0 is the peak velocity of the jet, x is the across stream

coordinate, xmid gives the distance of the peak velocity of the

jet from the western boundary, and db is the width of the jet.

The jet is symmetric in the along stream direction. The jet

parameters are set as follows: V0 5 0.87m s21, xmid 5 40 km,

and db 5 30 km. The parameters are chosen to be similar to

those used in the two-dimensional and three-dimensional nu-

merical models described in sections 3 and 4 at a depth of

200m. These parameters are, in turn, loosely based on what is

seen in the North Brazil Current (Johns et al. 1998). The ve-

locity profile used is shown in Fig. 1. In the Northern

Hemisphere, we would expect to see symmetric instability

FIG. 1. Velocity structure of the (a) barotropic and (b) surface

intensified Bickley jet, with xmid 5 40 km, db 5 30 km, and

H 5 1500 m. In (a) V0 5 0.87 m s21 and in (b) V0 5 1 m s21.
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develop in a region to the right of the jet’s center. In the

Southern Hemisphere, we may expect to see symmetric in-

stability between the western boundary and the jet’s center. In

such a configuration, the western boundary would input

anomalous vorticity into the flow, something that this idealized

framework is unable to represent. For this reason, and the fact

that this study focuses on cross-equatorial flows, we do not

apply the linear stability analysis to northward flowing jets in

the Southern Hemisphere.

The buoyancy frequency is set to a value of 5 3 1023 s21,

which is the mean buoyancy frequency at a depth of between

200 and 400m, as estimated from 82 neutral density profiles

taken by an Argo float off the coast of Brazil between January

2016 and February 2017 (Argo 2000). The trajectory of the

float and the mean neutral density profile are shown in Fig. 2.

The use of neutral density in calculating the buoyancy fre-

quency means the results of the linear stability analysis will be

more applicable to what is seen in the models presented in the

following sections rather than the ocean. This is because the

neutral density calculation does not reliably preserve vertical

buoyancy gradients (Eden and Willebrand 1999). Data from a

single Argo float were used as they were readily available and

provide a plausible estimate of the density structure of the

region. The value of f is set to 1.01 3 1025 s21, corresponding

to a latitude of approximately 48N.

For each eigenfunction, which physically corresponds to the

horizontal structure of the overturning cell, we can plot the

growth rate s as a function of vertical wavelength, l 5 2p/m,

and vertical viscosityAr. This is done in Fig. 3. We find that, for

a given vertical viscosity, there is a value of the vertical

wavelength which maximizes the growth rate—we denote this

wavelength as l*(Ar). As the growth is exponential, within a

few e-folding time scales, the vertical mode which maximizes

s will dominate the structure of the instability—assuming

nonlinear effects have not taken hold before this time. Thus,

although a discrete set of horizontal modes and a continuous

spectrum of vertical modes may be excited, we may expect a

single horizontal and vertical mode to dominate the structure

of the instability. However, we can only verify this expectation

with the use of a numerical model that takes into account the

nonlinearities neglected here.

Below a maximum ‘‘critical’’ viscosity, there is a maximum

and minimum vertical wavelength at which unstable modes

exist; at higher viscosities, all modes are stable. The maximum

wavelength is a result of stratification inhibiting vertical mo-

tions. Any mode with a wavelength smaller than the minimum

will experience strong viscous damping, rendering the mode

stable. The minimum vertical wavelength tends to zero in the

inviscid limit. Themaximum critical viscosity is found when the

maximum wavelength allowed by the stratification and the

minimum wavelength allowed by viscosity are equal.

It is not a priori clear whether the viscosity we are interested

in should be amolecular or turbulent viscosity. If one is looking

for signs of symmetric instability in a sufficiently coarse ocean

model, then it is the turbulent viscosity that will set the vertical

length scale. This makes sense as it is the only viscosity the

fluid is ‘‘aware’’ of. For real fluids, matters become more

problematic. Griffiths (2003a) suggests that secondary Kelvin–

Helmholtz instabilities form as a result of symmetric instability

and play a more dominant role in the vertical scale selection

than does viscosity. This means that the findings of this linear

stability analysis apply to the results of numerical models which

fail to resolve these secondary instabilities, but the relation to

what might be observed in meridional western boundary flows

in the ocean is more ambiguous.

For a given vertical viscosity we can also plot the two-

dimensional structure of the overturning that the instability

generates, as shown in Fig. 4 for a viscosity of 4 3 1024m2 s21

FIG. 2. (a) The map shows the trajectory of the Argo float on

which the initial stratification of the model is based. (b) Inset is the

neutral density profile used to initialize the model, based on ob-

servations from the Argo float. The vertical dash–dotted and dot-

ted lines in (b) mark the gn boundaries used in the water mass

transformation calculations discussed in section 4b.

FIG. 3. The growth rate of symmetric instability in a barotropic

Bickley jet is plotted as a function of the vertical wavelength of the

instability and the viscosity of the fluid. Overlain (dash–dotted line)

is the line along which the growth rate is maximized for a given

viscosity. Regions in white correspond to exponentially decaying

modes. There are no unstable modes at wavelengths greater than

285m at all vertical viscosities.
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(this viscosity was chosen as it corresponds to the value used in

the numerical models presented in sections 3 and 4). We see

that the instabilities generate a stack of alternating overturning

cells. Overlain in the figure is the absolute vorticity (solid line),

highlighting that the cells are strongly localized to the region of

negative potential vorticity. Despite the localization, the

overturning is nonzero outside of the region of negative ab-

solute vorticity. This enables the mixing of waters with positive

and negative PV, which over time will create a neutrally stable

PV configuration.

The mode shown in Fig. 4 has an e-folding time scale of

around 2 days. Seawater has a viscosity of 1026m2 s21, which

would lead to overturning cells with a much smaller vertical

wavelength of 15m and a smaller e-folding time scale of ap-

proximately 1 day. That the time scale is decreased slightly

when using a realistic viscosity suggests that the instability will

be at least as efficient at neutralizing anomalous PV in the

ocean. Differences between the vertical length scales seen here

and in other works (e.g., Taylor and Ferrari 2009) can be un-

derstood in terms of the dependence on vertical viscosity, and

the artificially high ‘‘eddy viscosity’’ used here.

A more rigorous analysis of the solutions to the boundary

value problem described in this section is performed by

Plougonven and Zeitlin (2009), who consider barotropic zonal

shear flows on an f plane. On an f plane there is no physical

distinction between meridional and zonal flows, so their find-

ings are broadly applicable, although the vorticity profiles they

use differ from those considered here. There also exists a broad

literature base on linear stability analyses of symmetric and

inertial instabilities on a b plane, with a focus on zonal currents

(e.g., Kloosterziel et al. 2017; Ribstein et al. 2014; Griffiths

2003b; Hua et al. 1997).

3. Two-dimensional numerical models

The previous section presents results from a linear stability

analysis of idealized, meridionally symmetric flows, situated

north of the equator at approximately 48N. This section details a

series of numerical simulations in which the symmetric in-

stability of more realistic currents is probed. Modifications

include finite depth, variable stratification, and surface in-

tensification of the current. The two-dimensional nature of

the flow is retained and the b effect still neglected, via the

imposition of a periodic meridional boundary condition on a

domain one grid cell thick. This prevents the development of

barotropic instability, meaning the evolution of the model

will be dominated by symmetric instability.

a. Methods

The numerical simulations are performed using the MITgcm

model (Marshall et al. 1997). The model domain consists of a

channel 400 km wide in the zonal direction and periodic in the

meridional direction. The horizontal resolution is 2 km. In the

vertical there are 160 depth levels, varying in size from 6.25m at

the surface to 25m at the bottom, giving a total depth of 1500m.

Simulations are run on an f plane, with f 5 1.01 3 1025 s21,

corresponding to a latitude of 48N, with the nontraditional

component of the Coriolis force included also, taking a value of

FNT 5 1.45 3 1024 s21. A control integration is also run in

which the nontraditional component of the Coriolis force is

neglected. A further set of integrations at 408N and 08, both
with and without the nontraditional component of the Coriolis

force, are performed. For the integration at 408N, f 5 9.35 3
1025 s21 and FNT5 1.113 1024 s21; at 08N, f5 0 s21 and FNT5
1.453 1024 s21. In all cases, no qualitative difference between

integrations with and without the complete Coriolis force is

found; this finding is discussed at length in section 3c.

Closure of the momentum equations in the horizontal is

provided by an adaptive biharmonic Smagorinsky viscosity.

This is chosen to minimize damping at the length scales of in-

terest (Smagorinsky 1963; Griffies and Hallberg 2000), with

the choice inspired by its successful use in Brannigan (2016),

which attempts to resolve similar submesoscale processes. A

Laplacian vertical viscosity Ar is used and set to a constant

value of 4 3 1024m2 s21 for all integrations, apart from a vis-

cous integration for which a value of 6 3 1023m2 s21 is used.

The standard value is chosen to ensure the vertical structure of

the symmetric instability can be adequately resolved by the

model grid.

A linear equation of state is employed:

r5 r
0
[12a

T
(T2T

0
)] , (7)

where r0 is the background density, T is temperature, T0 is a

reference temperature, and aT is the thermal expansion coef-

ficient. The absence of salinity means that changes in density

are modulated solely by changes in temperature. The value of

r0 is set to 1023.35 kgm23, aT set to 23 1024 K21, and T0 set to

308C. The linear equation of state is used to avoid the com-

plexities added by nonlinear effects. The diffusivity of tem-

perature is set to 1 3 1025m2 s21. The temperature advection

scheme used is the second-order moment Prather with limiter

(Prather 1986). The initial density profile is based on obser-

vations taken by an Argo float in the tropical Atlantic (Argo

2000). The density profile and float trajectory are shown in

FIG. 4. Contours show the zonal overturning streamfunction

generated by symmetric instability in a barotropic Bickley jet, as

predicted by the linear stability analysis. Overlain (the solid black

line) is the absolute vorticity of the initial jet. The absolute vorticity

is equal to zero along the dotted line. The depth coordinate may be

shifted by an arbitrary amount due to the assumption of normal

mode solutions in the vertical.
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Fig. 2, with the temperature profile in the model chosen to

match the observed neutral density profile.

The initial velocity profile is based on that of the surface

intensified Bickley jet. This can be expressed as

V(x, z)5V
0

�
12 tanh2

�
x2 x

mid

d
b

��
z1H

H
, (8)

where z is the vertical coordinate that becomes increasingly

negative below the surface, and H is the absolute value of the

depth. The jet parameters are set as follows: V0 5 1m s21,

xmid 5 40 km, db 5 30 km,H5 1500m. The profile is shown in

Fig. 1b. To test the sensitivity of the model to the jet’s position,

two control simulations are also run with xmid set to either 20 or

80 km: the resulting instability shows no qualitative depen-

dence on the jet’s position. The jet parameters are chosen to be

similar to those observed in the North Brazil Current by Johns

et al. (1998). However, it should be noted that the jet described

in this work is more intense (Vmax ; 1m s21 rather than

;0.9m s21), has less vertical shear (›zV ; 6.6 3 1024m21 s21

rather than ;3.5 3 1023m21 s21), and is deeper (H ; 1500m

rather than;800m) than that observed by Johns et al. (1998),

which puts some limitations on the direct applicability of the

results presented here to the North Brazil Current. The most

significant differences occur in the shear and depth. The depth

is chosen to be large, so as to prevent the bottom boundary

layer from having too strong an influence on the evolution of

any instabilities.

In the 48N integrations, the jet prescribed is symmetrically

unstable from the outset. This is intentional, as we wish to see

how a symmetric instability evolves in a ‘‘plausible’’ western

boundary current. In a two-dimensional numerical model, the

meridional advection of Southern Hemisphere waters with

negative PV into the domain is not possible. As such we must

initialize the numerical integration with waters of negative PV

already in place.

At the surface boundary a rigid lid condition is used. The

lateral boundary condition at the eastern and western edges of

the domain is set to no slip. At the bottom, a free-slip boundary

condition is used. The sensitivity of the simulations to the

choice of boundary condition has been tested by performing

model integrations with free-surface, free-slip lateral, and no-

slip bottom boundary conditions: in each case, no qualitative

differences in the resulting instability are observed.

b. Results and their relation to the linear stability analysis

Snapshots of PV at a range of times from the standard two-

dimensional numerical integration are shown in Fig. 5. We see

that after around 5 days the PV distribution begins to change.

The time scale (the inverse of the growth rate, 1/s) predicted

by the linear stability analysis is ;2 days, which is of the right

order of magnitude for what is seen here. In the final panel, we

can see how the PV in the initially unstable region has been

modified and set to a state of marginal stability—i.e., Q ; 0.

This modification of PV is driven by the underlying over-

turning motions predicted by the linear stability analysis. Due

to the along stream symmetry, we can rearrange the equation

for the conservation of PV to give

›Q

›t
5
›c

›z

›Q

›x
2
›c

›x

›Q

›z
, (9)

which makes the link between the unstable overturning gen-

erated by the instability and the redistribution of PV explicit.2

Figure 6 shows the overturning streamfunction generated in

the standard two-dimensional numerical integration. We see

structures similar to those predicted by the linear stability

analysis (cf. Fig. 4). The vertical Fourier transform of the

streamfunction is taken at two weeks. At the longitude of the

absolute vorticity minimum, there is a maximum in the power

spectrum with a vertical wavelength of 100m. This estimate of

the size of the overturning cells is remarkably similar to the

prediction of 105m made by the linear stability analysis. We

would expect fairly close agreement as the parameters used in

the linear stability analysis are based on those found between

200 and 400m of the jet used in this model.

The resolution of the model means that secondary Kelvin–

Helmholtz instabilities that typically accompany the excite-

ment of symmetric instability are absent. The resolution and

aspect ratio of the model may also be insufficient to fully re-

solve the dynamics of the symmetric instability if the over-

turning cells become aligned with isopycnals as expected

(Bachman and Taylor 2014). Furthermore, the use of an arti-

ficially high vertical viscosity, to ensure numerical stability,

means the growth rate of the instability is suppressed and its

vertical extent exaggerated. Although symmetric instability

may look different in the ocean, the conclusion that symmetric

instability is efficient at eliminating anomalous PVwithin a few

degrees of the equator seems unlikely to change.

The linear stability analysis suggests that by setting the viscosity

to be sufficiently high, the unstable motions can be suppressed.

FIG. 5. Snapshots of PV over time for the two-dimensional

standard (no-slip) run. PV is shown as a function of depth and

longitude. An animated version of this figure is available in the

supplemental material as Fig. 5S.

2 This equation neglects the frictional dissipation of PV; how-

ever, this contribution is generally much smaller than the contri-

bution from advection.
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Integrations with a high viscosity of 6 3 1023m2 s21 are per-

formed and, indeed, no instability develops. The linear stability

analysis also predicts no instability if the experiment is per-

formed at a sufficiently high latitude, or at the equator: model

integrations at 408N and 08 verify this is indeed the case

(not shown).

c. Dependence of the instability on the inclusion of the
complete Coriolis force

Zeitlin (2018) states that ‘‘symmetric instability drastically

changes upon inclusion of the full Coriolis force.’’ The author

goes on to perform a linear stability analysis of a zonally

symmetric shear flow on an f plane, taking into account the

nontraditional component of the full Coriolis force. They find

that the growth rate and spatial structure of unstable modes

may be significantly altered by inclusion of the full Coriolis

force. Naïvely, one may expect to observe drastic changes in

the above numerical simulations, given that on an ordinary f

plane there is no difference between a meridional and zonal

flow (as the system has no preferred orientation). However, the

inclusion of the nontraditional component of the Coriolis force

breaks this symmetry and reintroduces a natural meridional

direction. To understand how symmetric instability in meridi-

onal flows changes under the complete Coriolis force, we must

repeat the linear stability analysis of Zeitlin (2018) but for the

case of a meridional flow.

The Boussinesq equations of motion for a meridionally

symmetric fluid on an f plane, with the complete Coriolis force,

and in the limit in which the horizontal length scale is much

larger than the vertical length scale, are

Du

Dt
2 f y1F

NT
w1

›f

›x
5A

r

›2

›z2
u , (10a)

Dy

Dt
1 fu5A

r

›2

›z2
y , (10b)

Dw

Dt
2F

NT
u1

›f

›z
2 b5A

r

›2

›z2
w , (10c)

›u

›x
1

›w

›z
5 0 , (10d)

and

Db

Dt
5 k

›2

›z2
b . (10e)

Here, f is the geopotential pressure, k is the buoyancy diffu-

sion coefficient, and FNT is the nontraditional component of

the Coriolis parameter.

We now consider a flowwhich is, initially, purelymeridional,

with (u, y, w) 5 (0, V, 0), f 5 F and b 5 B. The flow is in

geostrophic balance, hydrostatically balanced and in equilib-

rium. Mathematically,

f V5
›F

›x
, (11a)

B5
›F

›z
, (11b)

›2V

›z2
5 0, (11c)

and

›2B

›z2
5 0. (11d)

We can then perturb this balanced flow, giving perturbed

variables (u, y,w)5 (u0,V1 y0,w0),f5F1f0 and b5B1 b0.
Substituting these values into the equations of motion and

considering terms only of linear order or lower in the perturbed

variables, we find that

›u0

›t0
1F

NT
w0 2 f y0 1

›f0

›x
5 0, (12a)

›y0

›t0
1u0›V

›x
1w0 ›V

›z
1 fu0 5 0, (12b)

›w0

›t0
1
›f0

›z
2b0 2F

NT
u0 5 0, (12c)

›b0

›t
2 k

›2b0

›z2
1w0 ›B

›z
1u0 ›B

›x
5 0, (12d)

and

›u0

›x
1

›w0

›z
5 0 , (12e)

where the operator ›/›t0 is defined as

›

›t0
5

›

›t
2A

r

›2

›2z
. (13)

From Eq. (12e) we see that, as in the linear stability

analysis (section 2), we can write u 0 and w0 in terms of an

overturning streamfunction c, where u0 5 2›zc and w0 5
›xc. We now obtain an equation of motion for the over-

turning streamfunction. The first step is to differentiate

the horizontal and vertical momentum equations [Eqs.

(12a) and (12c)] with respect to the vertical and zonal

FIG. 6. Snapshots of the zonal overturning streamfunction gen-

erated by symmetric instability in the two-dimensional standard

(no-slip) run. The 5-day moving average of the streamfunction has

been taken to mask the effects of an inertial wave.
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coordinates, respectively. Subtracting the two equa-

tions gives

2
›

›t0

�
›2

›x2
1

›2

›z2

�
c2 f

›y0

›z
1
›b0

›x
1F

NT

�
›u0

›x
1
›w0

›z

�
5 0: (14)

The last term on the left-hand side is the only term containing

an explicit dependence on FNT, and we know from Eq. (12e)

that it is equal to zero. The only other way the equation of

motion for the streamfunction could gain a dependence on FNT

is through the evolution of y0 or b0. Parameter b0 is a function of

the streamfunction and the initial buoyancy field and y0 de-
pends on the streamfunction and the initial meridional velocity

profile. Thus, the overturning driving the redistribution of PV

evolves in exactly the samemanner regardless of whether there

is rotation about the meridional axis or not.

For a meridionally symmetric flow, the PV itself is also in-

dependent of the complete Coriolis force. This can be seen by

explicitly evaluating Eq. (1), giving

Q5

�
f 1

›y

›x

�
›b

›z
2

›y

›z

›b

›x
. (15)

From Eq. (9) we can see that as both the streamfunction and

PV are independent of FNT, the evolution of the symmetric

instability will not depend on it either. This finding is not in any

way contradictory to the findings of Zeitlin (2018). The dif-

ference arises due to the asymmetry between the purely me-

ridional flow considered here and the zonal flow considered in

the aforementioned study.

It is, in fact, possible to make a more general statement

about the types of forces that leave the overturning unchanged.

We can modify the momentum equations (12a) and (12c) with

the addition of any irrotational force acting in the x–z plane

and that satisfies the relationship

›G
x

›z
1

›G
z

›x
5 0 , (16)

where Gx and Gz are the zonal and meridional components of

the force, respectively. This can be understood in the context of

Marshall and Pillar (2011) as follows—an irrotational force is

divergent and so will project on to the pressure gradient

terms of the momentum equation. A rotational force is

nondivergent and so projects entirely onto the acceleration

term. An irrotational (divergent) force is not able to alter

the acceleration term. In the system described above, the

inclusion of the complete Coriolis force may alter the

pressure field but not the motions within the x–z plane due

to its irrotational nature.

Although the crossing of the equator is a meridional phe-

nomenon, western boundary currents, such as the North Brazil

Current, will be oriented at some angle to a meridian, having

both zonal andmeridional components of velocity. In the zonal

limit, symmetric instability can change drastically with the in-

clusion of the full Coriolis force, whereas in the meridional

limit there is no change at all. For a realistic (not purely me-

ridional) western boundary current crossing the equator, the

structure of symmetric instability may therefore have some

dependence on the complete Coriolis force.

The relative importance of nontraditional effects depends

on the direction of the current relative to the meridional di-

rection. For a current oriented at an angle u to the meridional

direction, the findings of Zeitlin (2018) apply but with the

value of FNT scaling with sinu. Zeitlin (2018) defines a ‘‘non-

traditionality’’ parameter and using the findings of our work

we can generalize it to flows with a meridional component

giving

g5
cotf sinuH

L
, (17)

where g is the non-traditionality parameter and f is the lati-

tude. Nontraditional effects are important when g; 1. Close to

the equator, the coast of Brazil forms an angle of u; 608 to the

meridian. Using this value of u along with f5 48N,H5 100m,

and L 5 30 km gives g 5 0.04, suggesting that nontraditional

effects are unlikely to be hugely important off the coast

of Brazil.

4. Three-dimensional numerical models

Although a useful tool in understanding the processes at

play in cross-equatorial flows, the two-dimensional numerical

model fails to capture key aspects of the dynamics. Perhaps the

most important are the absence of the b effect and the sup-

pression of meridionally asymmetric motions, both of which

arise from the imposition of along-stream symmetry. It is the

variation and change in sign of planetary vorticity at the

equator that we suspect will lead to symmetric instability.

Furthermore, Edwards and Pedlosky (1998b) show that baro-

tropic eddies are an important and robust feature of cross-

equatorial flows. These motions cannot form if there is no

meridional variation in the flow. To fully understand what is

going on in the ocean, we must relax the requirement of along-

stream symmetry and turn to three-dimensional numerical

models. This section describes an idealized three-dimensional

model of the tropical Atlantic based on the two-dimensional

model discussed previously.

a. Methods

The three-dimensional model uses a configuration based on

the two-dimensional model described in section 3a. The dif-

ferences are outlined below.

The horizontal domain is 816 km in the zonal and 2688 km in

the meridional direction. The horizontal resolution is 2 km.

The southernmost boundary is located 512 km south of the

equator and the northern boundary 2176 km to the north. The

velocity at the northern and southern boundaries is prescribed

and takes the form of the surface intensified Bickley jet, as

shown in Fig. 1b. The zonal velocity is initially set to zero and

the meridional velocity to the same surface intensified Bickley

jet prescribed at the boundaries. As in the models previously

discussed, this means that the initial PV configuration is un-

stable to symmetric instabilities. In the Northern Hemisphere,

within around 3 weeks, themajority of the negative PV initially

present has been neutralized by an initial flurry of symmetric

instability (in the standard viscosity runs). After this time the

largest source of negative PV in the Northern Hemisphere is
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waters advected across the equator—this can be seen clearly in

the animations included in the supplementary materials.

To absorb any incoming waves or eddies, there exists a

sponge region within the domain, which relaxes the velocity to

the Bickley jet profile prescribed at the boundaries. The

sponges stretch from 350 km south of the northern and 40 km

north of the southern domain boundaries. The inverse relax-

ation time scale in these sponge regions varies according to a

tanh function from 0 s21 in the interior of the sponge to 2 3
1025 s21 at the open boundary. The sponge regions are not

shown in any figures.

Unlike in the two-dimensional model integrations, the

three-dimensional integrations evolve in qualitatively different

ways depending on whether a no-slip or free-slip lateral

boundary condition is imposed. The no-slip boundary condi-

tion is taken to be the standard choice, although results from

free-slip integrations are also presented. A time step of 144 s is

used for the no-slip model and 72 s for the free-slip model,

which has a higher Reynolds number.

Integrations are performed with either a standard vertical

viscosity of 4 3 1024m2 s21, or a high vertical viscosity of 1 3
1022m2 s21. The high viscosity is larger than the value of 6 3
1023m2 s21 used in the two-dimensional high viscosity runs.

This is because the original value was insufficient to shut down

the excitement of symmetric instability at high latitudes. The

larger value is still not strong enough to completely shut down

the excitement of symmetric instability; however, it does ap-

preciably suppress the growth of the instability.

The b-plane approximation is made, which provides a lin-

ear latitudinal variation of planetary vorticity of 2.3 3
10211 m21 s21. The nontraditional component of the Coriolis

force is also included by setting FNT to a constant value3 of

1.5 3 1024 s21.

The same thermodynamic scheme and initial stratification is

used as in the two-dimensional numerical models previously

discussed. In much of the following discussion analyses are

performed at a depth of 50m. This depth is chosen as it sits

below the models mixed layer but is still close to the surface

where the excitement of symmetric instability is expected to be

most vigorous.

b. Results and discussion

1) NO-SLIP LATERAL BOUNDARY CONDITIONS

Figure 7 shows snapshots of the PV field in the standard

three-dimensional no-slip integration, at a depth of 50m. Close to

the equator we see the spinning up of anticyclonic eddies of up

to 200km in diameter. The eddies are dynamically similar to

those seen in other studies of cross-equatorial flow and are a re-

sult of barotropic instability (e.g., Edwards and Pedlosky 1998a,b;

Jochum andMalanotte-Rizzoli 2003; Goes et al. 2009). Between

around 250 and 1000 km north of the equator, smaller-scale

features within the eddies are visible: these arise from the ex-

citement of symmetric instability.

There is an interesting interplay between the barotropic and

symmetric instabilities. We see in the Northern Hemisphere of

Fig. 7a that the eddy with anticyclonic PV initially penetrates a

few hundred kilometers, before it begins to retroflect. Within

around a week the PV within the eddy has been reduced and it

is able to propagate further northward (see Fig. 7b). If we look

to the submesoscale, we see features with large spatial PV

gradients over short distances. This is a result of the excitement

of symmetric instability which acts to redistribute PV within

the eddy. By reducing its PV the eddy is able to propagate even

further north (Fig. 7c). As the eddy moves further northward

the growth rate of symmetric instability increases and any re-

maining regions of negative PV become increasingly unstable.

We are left with an anticyclonic eddy with approximately

neutral PV, corresponding to a state of marginal stability.

Figure 8 shows a comparison of the relative and potential

vorticity of an eddy which has undergone this process. We see

that close to the equator regions of negative PV correspond to

FIG. 7. Snapshots of PV at 50-m depth for the standard (no-slip)

three-dimensional model. Note that this image, and all other

snapshots at 50-m depth, do not show the full model domain (the

sponge regions and the area east of 400 kmhave been cropped out).

An animated version of this figure is available in the supplemental

material as Fig. 7S.

3 Strictly speaking, in a spherical geometry we would expect

FNT5 2V cosuwhere u is the latitude. At the equator, the variation

in FNT with latitude is minimal, and over the domain considered

here, FNT is constant to two significant figures. As such it was de-

cided to ignore themeridional variation in FNT andmake the ‘‘non-

traditional f-plane’’ approximation.
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regions of negative relative vorticity. In a region from around

500 to 800 km north of the equator the relationship is less clear.

North of this region, the planetary vorticity is larger than the

relative vorticity and contributes the most to the absolute

vorticity. From Fig. 7 (and more clearly its animated counter-

part, Fig. 7S, in the supplemental material), the excitement of

symmetric instability is what seems to be driving the transition

from one regime to the other. South of a distance 500 km north

of the equator, the relative vorticity is negative. Between 500

and 800 km north, symmetric instability is excited. Waters

leaving this region then have approximately neutral PV as a

result of the excitement of symmetric instability.

The offset of this symmetrically unstable region from the

equator can be understood in terms of the growth rate of the

instability.

First, in the inviscid limit the square of the growth rate of

symmetric instability is proportional to f( f 1 j), where j is the

relative vorticity of the fluid. To first order (and in the absence of

symmetric instability), changes in the planetary vorticity are

approximately balanced by the relative vorticity, meaning ( f 1
j) is approximately constant along flowlines. This gives a growth

rate that grows linearly with f and hence latitude. Close to the

equator where f is small, the growth rate will be so small that

other processeswill dominate over symmetric instability.When a

fluid parcel is advected further north, its growth ratewill increase

until the excitement of symmetric instability becomes apparent.

At this point, symmetric instability begins to modify the PV and

absolute vorticity, removing anomalous vorticity from the flow.

At higher latitudes still, the source of negative PV that the in-

stability feeds off has been largely depleted. This means we only

see symmetric instability occurring within a finite latitude range.

Second, the fluid takes a finite time to show signs of sym-

metric instability. During this time the fluid will have been

advected northward away from the equator. This distance, d,

can be crudely estimated by d 5 Vt, where V is a typical

velocity of the fluid and t is the time scale it takes for sym-

metric instability to become apparent in the flow. TakingV;
80 cm s21 and t ; 4 days gives d ; 300 km. From this, we

should not expect the instability to be well developed either

at or close to the equator.

It is interesting to look at snapshots of the PV from the

three-dimensional model at a fixed latitude, to track how the

symmetric instability evolves over time, akin to what is shown

in Fig. 5. This is done in Fig. 9. Initially the instability behaves

similarly to the two-dimensional case, although the features are

slightly distorted by ‘‘noise’’ from passing eddies and inertial

waves. In more realistic model set ups, and in the ocean, it may

not be possible to see the initial, clean evolution of symmetric

instability. As such, other diagnostic quantities may be re-

quired to detect its excitement.

As with the two-dimensional numerical model, the coarse-

ness of the grid and use of an enhanced eddy viscosity are key

FIG. 9. Snapshots of PV as a function of depth and longitude at

750 km north of the equator, in the standard (no-slip) three-

dimensional model. An animated version of this figure is avail-

able in the supplemental material as Fig. 9S.

FIG. 8. Instantaneous relative and potential vorticity after 36

days at 50-m depth in the same region north of the equator, using

fields from the standard (no-slip) three-dimensional models.
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limitations of the three-dimensional integrations presented

here. The grid is unable to resolve fully the evolution of sec-

ondary instabilities, may not correctly resolve motion along

slanted isopycnals, will suppress the growth rate, and will en-

hance the vertical extent of the instability. As before, it seems

unlikely that this will change the fact that symmetric instability

is efficient at neutralizing anomalous PV in waters that have

crossed the equator, especially due to the larger growth rate we

expect to see when a realistic viscosity is used.

The PV evolution of the viscous no-slip integration is shown

in Fig. 10. The results appear qualitatively similar to those of

Edwards and Pedlosky (1998a) whose model does not permit

symmetric instability. In this model, lateral friction is leading

to dissipation of PV, which is not as dominant in the standard

no-slip integration. At some latitudes, submesoscale patterns

are starting to become apparent, particularly within the an-

ticyclonic eddies. Figure 11 shows how the PV varies with

depth. Immediately clear is the presence of symmetric in-

stability like features, suggesting the high viscosity has only

partially suppressed symmetric instability. Note how the

vertical length scale of the disturbance is larger in this inte-

gration than in the standard no-slip one. This can be under-

stood with reference to Fig. 3—higher viscosities lead to

larger vertical length scales.

2) FREE-SLIP LATERAL BOUNDARY CONDITIONS

The behavior of the three-dimensional model under no-slip

and free-slip lateral boundary conditions is qualitatively dif-

ferent. The main difference is the behavior of the barotropic

eddies. The sensitivity to the choice of lateral boundary

condition is not seen in the two-dimensional models as they

do not develop these barotropic eddies. The differences can

be seen by comparing Figs. 7 and 12, and more clearly in their

animated counterparts, Figs. 7S and 12S of the supplemental

material.

In the free-slip integrations, the eddies grow to be larger, and

propagate northward more quickly, than in the no-slip integra-

tions. They do not retroflect in the same way as before. As they

propagate northward, they entrain waters of negative PV and

elongate, creating a concentrated pool of symmetrically unstable

waters. When the eddies do become unstable, the process is

much more explosive. This can be seen in Fig. 12 and its ani-

mated counterpart, Fig. 12S, in the supplemental material. As

the eddies propagate northward more quickly, the symmetri-

cally unstable region appears to be shifted northward. This is

because it takes a similar time for symmetric instability to de-

velop, but the eddies have moved further north of the equator

during this time. Figure 13 shows the PVas a function of depth at

750 km north for the same model. At the western boundary, we

do not see the input of positive potential vorticity as we do in the

no-slip case, which goes some way to explain the difference in

behavior of the eddies seen in the no-slip and free-slip models.

The PV evolution from a free-slip viscous integration is

shown in Fig. 14, reinforcing that, with the noise of symmetric

instability removed, the barotropic eddies behave very differ-

ently under the two different lateral boundary conditions. This

raises the question of what the most appropriate boundary

condition is. For the idealized model setup, this is likely the no-

slip lateral condition. In a realistic model, given the small

aspect ratio of the problem, a no-slip bottom boundary and

free-slip lateral boundary condition, along with variable ba-

thymetry might better represent the physics. This is a result of

FIG. 10. Snapshots of PV at 50-m depth for the no-slip viscous

three-dimensional model. An animated version of this figure is

available in the supplemental material as Fig. 10S.

FIG. 11. Snapshots of PV as a function of depth and longitude at

750 kmnorth of the equator, in the no-slip viscous three-dimensional

model. An animated version of this figure is available in the sup-

plemental material as Fig. 11S.
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gently sloping ocean bathymetry in the regionmeaning that the

sea floor is better approximated as a bottom, rather than lat-

eral, boundary.

3) CORRELATIONS BETWEEN RELATIVE AND

POTENTIAL VORTICITY

It is useful to be able to define concretely the latitudes at

which symmetric instability is occurring. Thus far, this has been

done visually by looking at the regions in which submesoscale

patterns begin to form in waters with negative PV. It has been

noted that regions in which symmetric instability is occurring

mark a transition from a regime in which the PV balance is

dominated by relative vorticity to one in which the planetary

vorticity dominates. Figure 8 suggests it may be possible to

identify latitudes at which symmetric instability is occurring by

considering correlations between relative vorticity and PV.

The relative vorticity and PV are interpolated onto the same

grid. The Pearson correlation coefficient, r, of the vertical

component of relative vorticity and PV between 21 and 49 days

is calculated for all grid points between the western boundary

and 400 km east at 50-m depth for each latitude. The calcula-

tion starts at 21 days so that any instability resulting from the

initial conditions has died down. How the correlation coeffi-

cient varies with latitude is shown in Fig. 15, for both the no-slip

and free-slip, and standard and viscous, integrations.

In Fig. 15, we see that the vertical component of relative

vorticity and PV are very strongly correlated in the Southern

Hemisphere. At around 250 km north of the equator, there is an

abrupt change in the correlation for the standard no-slip and

free-slip integrations. The latitude of the change seems to cor-

respond to the latitude north of which we observe symmetric

instability. In the case of the no-slip integration, r reduces to

around 0.8, and for the free-slip integration it is reduced even

further, to less than 0.6. This makes sense—in the free-slip

experiment the excitement of symmetric instability appears

qualitatively more vigorous than in the no-slip experiment.

We see a much smaller and more gradual drop in the cor-

relation for the viscous integrations, and the decrease in r ap-

pears to begin atmuch higher latitudes—around 600 km for the

free-slip and 1000 km for the no-slip integration. This is con-

sistent with what we see in the models: at low latitudes we see

little evidence of symmetric instability, but its effects become

apparent at higher latitudes.

We can understand the change in correlations in terms of the

PV of a meridional flow, given by

Q’

�
N2f 2M2 ›V

›z

�
1N2j , (18)

where N2 and M2 are the vertical and horizontal buoyancy

gradients, respectively. In the absence of symmetric instability,

at a given latitude, one would expect there to be a strong

correlation between Q and j. If N2 and f are approximately

constant, andM2 and ›zV are small, then the bracketed term of

the above equation will be approximately constant and a linear

relationship between Q and j will exist. When symmetric in-

stability is excited, localized vortex stretching and changes in the

vertical shear cause a breakdown of this linear relationship. As

such, one would expect the correlation between the vertical

component of relative vorticity and PV to be much lower. The

fact that the correlation changes only slightly in the viscous runs,

which exhibit barotropic eddies but suppressed excitement of

FIG. 12. Snapshots of PV at 50-m depth for the free-slip three-

dimensional model. An animated version of this figure is available

in the supplemental material as Fig. 12S.

FIG. 13. Snapshots of PV as a function of depth and longitude at

750 km north of the equator, in the free-slip three-dimensional

model. An animated version of this figure is available in the sup-

plemental material as Fig. 13S.
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symmetric instability, suggests that the changes in the linear

relationship are the result of symmetric instability.

4) SPECTRAL ENERGY DENSITY

Symmetric instability is a submesoscale instability, suggest-

ing that when it is excited, wewould expect to see an increase in

the amount of energy at small length scales. Yankovsky and

Legg (2019) find that within their models of symmetric insta-

bility in Arctic overflows, symmetric instability has a finger-

print in the spatial Fourier transform of the vertical kinetic

energy (KE). This technique is used here to attempt to diag-

nose symmetric instability in a similar manner.

For the standard three-dimensional no-slip integration, the

quantity w2/2 is calculated at a depth of 50m from the western

boundary to 200 km east, and from 250 to 750 km north. The

power spectrum is taken along the zonal dimension and the

meridional mean taken. This is plotted at 1-week intervals in

Fig. 16a. The same is done for the three-dimensional viscous

no-slip integration in Fig. 16b. The same procedure is per-

formed for the single latitude of the two-dimensional standard

and viscous no-slip models and the results shown in Figs. 16c

and 16d, respectively.

In Figs. 16a–c, we see a flattening of the power spectra over

time. This corresponds to the development of vertical motions

with a structure that varies over small length scales. In the case

of the standard three-dimensional model, within around four

weeks the power spectrum reaches an equilibrium.

The high viscosity of the viscous three dimensional inte-

gration is not sufficient to completely inhibit the development

of symmetric instability—instead it suppresses the growth rate.

As such, some flattening of the power spectra is visible; how-

ever, it takes around 5 weeks for the flattening to reach an

equilibrium.

In the standard two-dimensional model, after an initial

flattening of the spectra there is a subsequent steepening from

4 weeks onward. After 4 weeks, the two-dimensional model

has used upmost of its finite reserves of negative PVwhich fuel

symmetric instability. This means that there is no process to

sustain the small-scale vertical motions and they begin to die

away. This is in contrast to the three-dimensional model in

which the supply of negative PV is constantly being replen-

ished by the advection of Southern Hemisphere waters across

the equator. As the two-dimensional model is not capable of

producing barotropic eddies, we can be fairly certain that the

changes in the power spectrum are not related to them. The

increased variability relative to the three-dimensional models

is due to the removal of the meridional averaging step.

In the viscous two-dimensional model, in contrast to its

three-dimensional counterpart, we see no flattening at all in the

power spectra.4 This is because the vertical viscosity is suffi-

cient to completely inhibit symmetric instability in this model.

The stationarity of the power spectra allows us to say with some

confidence that the flattening seen in the other models is due to

the presence of symmetric instability. Indeed, the flattening of

power spectra may prove useful for identifying symmetric

FIG. 14. Snapshots of PV at 50-m depth for the free-slip viscous

three-dimensional model. An animated version of this figure is

available in the supplemental material as Fig. 14S.

FIG. 15. Correlations between relative and potential vorticity as a

function of latitude. Shown for integrations with a standard (solid

lines) or enhanced (dotted lines) vertical viscosity, and for both no-

slip (black lines) and free-slip (gray lines) models.

4 Note that the viscous two-dimensional model uses a vis-

cosity of 6 3 1023 compared to 1022 m2 s21 for the viscous

three-dimensional model.
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instability in more complex ocean models and in observations,

in which the signature of symmetric instability may otherwise

be less obvious.

The power spectra appear to show a lot of power concentrated

at the grid scale. Inspection of the vertical velocities in the region

suggest this is not the result of gridscale noise, but rather physical

flow structures.Note that the axes in Fig. 16 are logarithmic and so

may appear to exaggerate the amount of energy at the grid scale.

5) TRANSFORMATION OF WATER MASSES

Symmetric instability leads to the generation of small-scale

overturning cells. Such cells may be expected to lead to the

mixing of waters with different density and contribute to water

mass transformation. In the Walin (1982) water mass trans-

formation framework, the rate of formation of water between

two isopycnal surfaces r and r 1 Dr is given by

G5
›V
›t

1Dc5G(r)2G(r1Dr) , (19)

whereG is the rate of formation of fluid between the isopycnals,

V is the volume bounded by the isopycnals, Dc is the net vol-

ume flux out of the region, and G(r) is the diapycnal volume

flux across the r isopycnal—also known as the water mass

transformation. By convention a positive value of G corre-

sponds to a flux from lighter to denser waters. These quantities

are shown diagrammatically in Fig. 17.

The water mass formation is calculated for density classes of

s , 23.45, 23.45 # s , 26.50 and s $ 26.50, where s 5 r 2
1000 kgm23. Physically these correspond to a surface layer, the

pycnocline and deep ocean, as shown in Fig. 2 alongside the

initial stratification profile. The formation is diagnosed in lat-

itude bands with boundaries at 2500, 2250, 0, 250, 750, and

1500 km for both the standard no-slip and viscous no-slip

FIG. 16. Spectral distribution of vertical kinetic energy for the (a) standard three-dimensional, (b) viscous three-

dimensional, (c) standard two-dimensional, and (d) viscous two dimensional models. Note that the vertical viscosity

used in the viscous two-dimensional integration is 6 3 1023 m2 s21 compared to 1022 m2 s21 for its three-

dimensional counterpart. Darkening line color corresponds to later model times.

FIG. 17. Sketch of the processes contributing to water mass for-

mation in the Walin framework. Adapted from Williams and

Follows (2011).
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integrations. There is a large amount of temporal variability in

the formation and so it is hard to discern any trends in the vol-

umes of the chosen density layers. To remove this variability, the

rolling average is taken over 25 output time steps (corresponding

to approximately 2.9 days), and is shown in Fig. 18. By cumu-

latively integrating the time series, it is easier to identify long-

term trends in formation. Figure 19 shows the cumulative

formation in each of the density classes and latitude bands.

South of 250 km, there are no significant changes in the

volume of the surface layer for either the standard or viscous

runs. North of this latitude, in both models we see a trend

corresponding to a decrease in volume. In the 250–750-km

band, the trend is most significant in the standard run; however,

in the 750–1500-km band the volume change of the viscous run

is more prominent. These latitudes are where we see the ex-

citement of symmetric instability, which is mixing dense waters

from below the surface layer with waters within it. This leads

to a reduction of waters in the lightest density class.

The growth rate of symmetric instability in the extra viscous

integration is suppressed at lower latitudes. At higher latitudes,

where the instability has had longer to develop, its effects can

still be seen in the depletion of the mixed layer. The formation

is stronger for the viscous integration than the standard in the

northernmost latitude band. The supply of negative PV that

fuels the instability is lower in the case of the standard inte-

gration as it has been neutralized further south. This reduced

supply is what causes lower formation in the standard inte-

gration than in the viscous integration.

FIG. 18. Water mass formation rates for the surface, pycnocline and deep ocean (columns) within different latitude bands (rows). Rates

are shown for the three-dimensional standard (solid lines) and viscous (dotted lines) no-slip models. High frequency variability was

filtered from the rates by taking a 2.9-day rolling average.
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For the pycnocline, in the two northernmost latitude bands, we

see differences in the formation between the standard and viscous

integrations. For the standard integration, we see both a net

formation and depletion of pycnocline waters depending on the

time scales we look at. For the viscous integration, we see

a similar time-varying formation-depletion pattern within the

pycnocline, however, at later times in the northernmost band, we

also see a trend of net depletion of pycnocline waters. Looking to

the deep ocean (in the same latitude band), we see a net forma-

tion of deep waters, similar in magnitude to the depletion we see

in the surface layer and pycnocline waters. This can be under-

stood in terms of the dependence of the vertical scale of sym-

metric instability on the viscosity. Figure 3 suggests that as

we increase the viscosity the size of the overturning cells will

increase. For the viscosity used in the viscous integration we

might expect a l ; 102m. This can lead to overturning cells able

to connect the deep ocean and the surface layer, as seen in Fig. 11.

The magnitude of the filtered water mass formation is typi-

cally small compared to the meridional transport of the mod-

eled current. The maximum formation rate is around 4.8 Sv;

however, more generally, symmetric instability is responsible

for instantaneous formation rates of no more than 2 Sv. The

cumulatively integrated formation for the standard run sug-

gests that the net effect of symmetric instability on water mass

transformation is small, with large instantaneous formation

rates balancing over time periods of several weeks.

The water mass formation rates calculated here may have

limited applicability to the ocean. Here, we have found that

FIG. 19. Cumulatively integrated water mass formation rates for the surface, pycnocline, and deep ocean (columns) within different

latitude bands (rows). The net formation is plotted for the three-dimensional standard (solid lines) and viscous (dotted lines) no-slip

models.
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the rates are affected by the vertical viscosity used, suggesting

different formation rates would be found if a lower viscosity

were used. Yankovsky and Legg (2019) find that mixing by

symmetric instability is largely adiabatic, with irreversible

mixing resulting from secondary shear instabilities. The

model grid used here is too coarse to resolve such secondary

instabilities, suggesting formation rates may be higher if a

finer grid were used. Similarly, the model resolution may

prevent the accurate representation of symmetric instability

when the overturning cells are oriented along isopycnals. It

seems unlikely that this limitation will alter the key finding

that symmetric instability is efficient at removing anomalous

PV originating from the opposing hemisphere.

5. Conclusions

The surface limb of the Atlantic meridional overturning

circulation draws waters with negative PV from the Southern

Hemisphere into the Northern Hemisphere. 32 Sv of this

transport occurs in the upper 600m of theNorth Brazil Current

(Johns et al. 1998; Schott et al. 1993). The negative PV of the

Southern Hemisphere waters must be modified to enable

crossing of the equator bymore than a fewRossby deformation

radii, and to ensure stability to symmetric instability. The de-

tails of the modification mechanism have been hitherto un-

known; however, this work finds compelling theoretical and

model-based evidence that the excitement of symmetric in-

stability is able to set the PV of cross-equatorial western

boundary flows to zero.

Linear stability theory predicts that western boundary cur-

rents similar to the North Brazil Current should become

symmetrically unstable upon crossing the equator. The theory

is able to predict a growth rate, a characteristic vertical length

scale, and the structure of the overturning cells which develop

during the excitement of symmetric instability. The vertical

length scale, however, is dependent upon the vertical eddy

viscosity. Interpreting this result for real fluids presents a

challenge; however, based on the work of Griffiths (2003a) it

seems likely that secondary instabilities will play an important

role. The equations of motion that govern the overturning

streamfunction allow the overturning cells to extend into re-

gions of positive PV. This allows the mixing of waters with

positive and negative PV. Linear stability theory also predicts

that a western boundary current such as the North Brazil

Current may become symmetrically unstable at low latitudes

south of the equator. Such instabilities are not considered in

this work as the anomalous PV has different origins to that

found in a cross-equatorial flow.

To verify the results of the linear stability analysis, and

evaluate its applicability to more realistic currents, a simplified

two-dimensional, meridionally symmetric, numerical model

was developed. This model incorporates the effects of non-

uniform stratification and vertical shear in the flow, which the

linear stability analysis neglects. The model shows that the

predictions of the linear stability analysis, including the de-

velopment of stacked overturning cells with a characteristic

vertical length scale, remain despite the added complexity.

Surprisingly, there is no change in the evolution of symmetric

instability when the nontraditional component of the Coriolis

force is included (e.g., Zeitlin 2018). By returning to linear sta-

bility theory we can see that this is not unexpected—the over-

turning streamfunction which drives the redistribution of PV,

and the PV itself, are independent of the nontraditional Coriolis

parameter. By introducing the complete Coriolis force, we

introduce a natural meridional direction. This breaks the

equivalence between meridional and zonal flows that exists

on a traditional f plane, meaning results derived for zonal flows

will not necessarily hold true for meridional ones. More gen-

erally it was found that subjecting a flow to any irrotational

force in the plane perpendicular to it, will not alter the evolu-

tion of symmetric instability within the flow.

The two-dimensional model neglects the b effect and

constrains the horizontal motions of the fluid flow. A further

degree of realism was added by developing an idealized three-

dimensional model of the tropical Atlantic which incorporates

these effects. At the northern and southern boundaries of

themodel an idealized western boundary flow is prescribed. As

the flow evolves two types of instability develop. The first is the

spinning up of anticyclonic eddies as the fluid crosses the equator.

This is a barotropic instability, and has been both observed and

investigated in works by Edwards and Pedlosky (1998a,b) and

Goes et al. (2009). The second instability is identified as symmetric

instability for the following reasons:

d The characteristic time scale of the instability is of the sameorder

of magnitude as that predicted by the linear stability analysis.
d The vertical length scale of the overturning cells that develop

as a result of the instability agree with those predicted by the

linear stability analysis.
d The instability is confined to regions of negative PV with

minimal penetration of the instability into regions of positive

PV. Eddies with strongly negative PV fuel its excitement.
d Waters leaving the region of instability have PV that is

approximately neutrally stable to symmetric instability.
d The position of the instability is well explained by arguments

about the latitudinal dependence of the growth rate of

symmetric instability.
d The instability can be suppressed in models with the impo-

sition of a sufficiently high vertical viscosity, as predicted by

linear stability theory.
d The power spectrum of the vertical kinetic energy in the

standard three-dimensional integration, is similar to that in

the corresponding two-dimensional integration. The latter

unambiguously exhibits symmetric instability, due to the

absence of barotropic eddies. Moreover, the viscous two-

dimensional integration, which shows no signs of symmetric

instability, does not show the same power spectrum flatten-

ing seen in the two-dimensional and three-dimensional in-

tegrations which are identified as exhibiting symmetric

instability.

Yankovsky and Legg (2019) suggest that analyzing the power

spectrum of vertical kinetic energy may be a useful technique in

identifying signs of symmetric instability in more complex and

noisy models—a suggestion that our work strongly supports.

Our initial hypothesis was that the excitement of symmetric

instability could lead to transformation of fluid between
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different water mass classes, leading to changes in our under-

standing of the overturning budget of theAMOC.However, an

analysis of the water mass formation rates in the surface,

pycnocline and deep ocean suggests that the net contribution

of symmetric instability to the budget is likely to be small.

Over short time scales, symmetric instability appears to

drive transformations between these density classes of around

62 Sv, but as high as64 Sv at times; however, over longer time

scales these transformations seem to average out to a net rate

that is generally around 61 Sv in the surface and pycnocline

waters and62 Sv in the deep waters. A limitation of the water

mass transformation calculations is the viscosity dependence of

the overturning cells generated by the instability. In the ocean,

we would expect the overturning cells to have a smaller vertical

extent of around 15m, which would likely alter the formation

rates seen here. Furthermore, Yankovsky and Legg (2019) find

that the mixing of waters by symmetric instability is largely

adiabatic and that secondary shear instabilities are found to

cause irreversible mixing. This suggests that using a high-

resolution model is key to being able to reliably measure wa-

ter mass transformations. Achieving a high enough resolution

with the fully three-dimensional model may be difficult; how-

ever, the two-dimensional models could prove useful for at-

taining better estimates. The low resolution of the models used

here may also lead to incomplete representation of the sym-

metric instability if the overturning cells are oriented with

isopycnals. However, this is unlikely to change the key result

that symmetric instability is efficient at removing anomalous

PV originating from opposing hemispheres.

The work presented here has focused on currents dynami-

cally similar to theNorth Brazil Current. It is not clear what the

role of symmetric instability in the modification of the PV of

other cross-equatorial currents is. For instance, the Somali

current is an intense, seasonal, wind-driven, cross-equatorial

western boundary current in the Indian ocean. In theory,

symmetric instability could also be at play there, as long as the

relative vorticity is large enough to produce a significant

growth rate. The return flow of the AMOC takes the form

of a deep western boundary current, with maximum speeds

around a fifth of what is observed in the upper ocean. We have

performed preliminary investigations into symmetric instabil-

ity in an idealized deep western boundary current, with initial

results suggesting it may too be susceptible to symmetric in-

stability. The instability, however, is much less explosive, with a

characteristic time scale of several months. It is not yet clear

whether the instability is sufficient to dominate over boundary

layer processes in the modification of anomalous PV.

This work has not explored the dynamics of waters with

positive PV in the Southern Hemisphere. Against the western

boundary is a region of positive absolute vorticity. However, it

is likely that dissipative fluxes of PV dominate the PV balance

in the region, potentially providing amore efficient mechanism

by which anomalous PV can be removed (Edwards and

Pedlosky 1998a).
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